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ABSTRACT
Co-speech gesture generation is essential for multimodal chatbots
and agents. Previous research extensively studies the relationship
between text, audio, and gesture. Meanwhile, to enhance cross-
culture communication, culture-specific gestures are crucial for
chatbots to learn cultural differences and incorporate cultural cues.
However, culture-specific gesture generation faces two challenges:
lack of large-scale, high-quality gesture datasets that include di-
verse cultural groups, and lack of generalization across different
cultures. Therefore, in this paper, we first introduce a Multiple Cul-
ture Gesture Dataset (MCGD), the largest freely available gesture
dataset to date. It consists of ten different cultures, over 200 speak-
ers, and 10,000 segmented sequences. We further propose a Cultural
Self-adaptive Gesture Generation Network (CSGN) that takes mul-
timodal relationships into consideration while generating gestures
using a cascade architecture and learnable dynamic weight. The
CSGN adaptively generates gestures with different cultural char-
acteristics without the need to retrain a new network. It extracts
cultural features from the multimodal inputs or a cultural style
embedding space with a designated culture. We broadly evaluate
our method across four large-scale benchmark datasets. Empirical
results show that our method achieves multiple cultural gesture
generation and improves comprehensiveness of multimodal inputs.
Our method improves the state-of-the-art average FGD from 53.7
to 48.0 and culture deception rate (CDR) from 33.63% to 39.87%.

CCS CONCEPTS
• Computing methodologies→ Animation; Artificial intelli-
gence; Supervised learning.
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1 INTRODUCTION
Multimodal co-speech gesture generation is essential for devel-
oping social chatbots and agents [21, 42]. The gestures not only
complement speech and add non-verbal information that helps
listeners to concentrate and understand utterances [10, 13], but
also improve the intimacy between humans and multimodal chat-
bots [65]. However, co-speech gesture generation is a challenging
problem because learning and generating gestures have to compre-
hend the complex relationship between speech, gestures, and other
different modalities [42, 73].

Gesture is unique [57], as different cultures [19] influence speak-
ers to use different styles of motion [37]. For example, when refer-
ring to the past, English speakers often move their hands backward
to indicate the past [6]. Spanish speakers, on the other hand, pre-
fer to swing their arm from the chest to the left [49]. Meanwhile,
Chinese speakers tend to swing their arm to the left at a lower
level [9]. While recent research on co-speech gesture generation
extensively studies the integration and relationship of multiple
modalities, such as audio [21, 41], text [4, 5, 8], emotion [8, 42],
speaker identity [42, 73] and so on, culture-specific gesture genen-
ration remains unsolved and presents several challenges.

The first challenge comes with the quality and scale of avail-
able datasets. Previous methods [46, 60, 67] are mainly trained on
English-language multimodal datasets, such as GSD [58], YouTube
Gesture [21], and TEDGesture [73]. However, most available datasets,
as shown in Table. 1, have either only one speaker [17] or many
speakers [21, 23, 62, 73] from same culture (mostly in English). Cur-
rently, BEAT [42] is proposed, including four different languages,
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Table 1: Comparison of datasets. We compare with several gesture datasets that are used more frequently in the community.
“#” indicates the number. The best scores are reported in bold. Our dataset is the largest freely available gesture dataset with
multiple cultures and will provide a great contribution to the efforts in developing naturalistic chatbots in different cultures.

Dataset #Modality # Speaker Audio (Culture) Text # Sequence Duration [hrs]

MPI [63] 3 1 - ✓ 1,408 1.5
Takechi [58] 3 2 Jp - 1,049 5.0
YouTube Gesture [21, 23] 5 6 En - N/A 33
Taking16.2M [40] 5 50 En ✓ N/A 50
TED Gesture [73, 74] 4 >100 En ✓ 1,400 97
BEAT [42] 7 30 En/Cn/Es/Jp ✓ 2,508 76

MCGD (Ours) 5 263
En/Cn/Es/Jp/Kr

✓ 10,414 103Fr/It/Ru/De/Ar

but over 81% of the data is in English. However, people from dif-
ferent cultures exhibit distinct gesture characteristics in various
circumstances, such as agreement [19], rejection [24], and online-
talking [70]. Therefore, it is crucial for multimodal chatbots to learn
culture-specific gestures when communicating with users from
different native cultures. Building a multiple native culture dataset
will greatly improve the performance of naturalistic multimodal
chatbots facing cross-culture situations.

The second challenge is the lack of capability for generalization
and flexibility across different languages. Current approaches are
typically designed to learn co-speech gesture characteristics from
a collection of videos of a single culture [21, 42, 46, 73]. Facing
each new culture, they are required to retrain the model, which
can be time- and resource-consuming [39]. Hence, methods that
can self-adapt to multiple cultures and generate culture-specific
gestures are significant for developing multimodal chatbots.

Motivated by the challenges outlined above, we first introduce
a pseudo-label dataset named Multiple Culture Gesture Dataset
(MCGD), which contains ten different cultures represented by over
200 speakers across five modalities. Building on the methodology
of Lotfian and Busso [44], our data collection and annotation pro-
cess is flexible and scalable, resulting in 103 hours of audiovisual
data and more than 10,000 segmented sequences (Sec. 3). We care-
fully designed the datasets to cover a wide range of natural lan-
guage characteristics, including the ratio of male/female, range
of phonemes, and variety of languages. Furthermore, we further
observed the correlation of gestures with different cultures after
statistical analyses on MCGD. Overall, the MCGD is the largest
freely available gesture dataset to date, consisting of ten different
cultures and over 200 speakers.

Additionally, we propose a Cultural Self-adaptive Gesture Gen-
eration Network (CSGN). It learns to synthesize gestures based on
the three modalities mentioned above (text, audio, and culture) and
adapts to multiple cultures by parameter sharing. The proposed
method consists of cascaded encoders and dynamic weights that
enhance the contribution of audio and text features. It extracts cul-
tural features from the multimodal inputs of different cultures or a
cultural style embedding space with a designated culture. Moreover,
we use a classification network to classify latent codes of culture to
avoid trivial solutions and encourage each cultural feature to have
spatial diversity distance from each other (Sec. 5.3).

Besides, to evaluate the performance of CSGN in generating
different cultural gestures, we further propose a Culture Decep-
tion Rate (CDR), inspired by the deception rate used in artist-style
transfer [14, 56]. The CDR calculates the rate at which the network
classifies the generated gestures into the correct cultural features.

Through qualitative and quantitative experiments, our method
achieves adaptive culture-specific gesture generation. The gener-
ated gestures are unique to different cultures and preserve diversity
(Fig. 6 (c)), and increase the state-of-the-art Culture Deception Rate
(CDR) by 18.6% (Sec. 5.3). We further compare several models using
different generated architecture, such as adversarial training [73],
quantization [46], and flow-based [3, 26]. The results show that our
method gets state-of-the-art performance and improves the average
FGD [73] from 53.7 to 48.0 (Sec. 5.3).

Extensive experiments demonstrate that our approach is highly
effective, achieving state-of-the-art performance on four large-scale
benchmark datasets. In summary, our main contributions are:

•We release a Multiple Culture Gesture Dataset (MCGD), which
is the largest freely available co-speech gesture dataset to date, con-
sisting of ten different cultures, over 200 speakers, 10,000 segmented
sequences, and a wide range of natural language characteristics.
The MCGD may provide a great contribution to the efforts in de-
veloping naturalistic multimodal chatbots in different cultures.

• We propose a Cultural Self-adaptive Gesture Generation Net-
work (CSGN). It adapts to multiple cultures and learns the relation-
ship with audio, text, and culture through cascaded architecture.
We further introduce a new indicator Culture Deception Rate (CDR)
to evaluate the performance of culture-specific gesture generation.

• We broadly evaluate our approach across four large-scale
datasets with several state-of-the-art gesture generation methods.
Quantitative and qualitative evaluation results demonstrate the
improvements in our method are concise and effective.

2 RELATEDWORK
Co-speechGesture Datasets. The co-speech gesture datasets sup-
port the development of multimodal chatbots and agents. These
datasets are used to study co-speech gestures in natural settings
using data-driven approaches [21, 42, 46, 73]. Additionally, psy-
chologists use these datasets to study various aspects of co-speech
gesture [34, 57] (see Wagner et al. [64] for a review).
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Existing gesture datasets are annotated from two perspectives:
motion capture and pseudo-labeling. The former involves precisely
and accurately capturing the motion process through the use of
motion capture devices, such as the MPI [63], Takechi [58], and Tak-
ing16.2M [40]. Recently, Liu et al. [42] build a large body expression
audio-text dataset (BEAT), which captures the co-speech gestures of
30 speakers expressing eight different emotions. The other tries to
annotate the gestures with the help of deep learning algorithms. Gi-
nosar et al. [21] create a YouTube Dataset which uses OpenPose [12]
to extract 2D key poses from YouTube videos, and Habibie et al.
[23] extent it to a full 3D body with facial landmarks. Recently,
Yoon et al. [73] build a TED dataset using VideoPose3D [51].

However, the resources currently developed for other cultures
are few and of different domains [16, 60, 68]. In fact, between the
359 multimodal resources certified for all languages by the LRE
map [52], most languages have only one or two freely available
datasets while English has over 100. In order to ensure that multi-
modal chatbots are able to adapt to local users, it is important to
train them on native datasets rather than simply translating text
from English datasets [33]. Though BEAT [42] supports four differ-
ent languages, it only includes data from ten individuals, and over
81% of the data is based on English.

To address this limitation and to increase the dataset’s native
adaptability and scale, we introduce the Multiple Culture Gesture
Dataset (MCGD). This dataset includes data from ten cultures, with
each culture having over 20 people to reduce individual bias. We
believe the MCGD will make a significant contribution to efforts
aimed at developing naturalistic chatbots in different cultures.

Conditional Conversational Gesture Generation. Previous
works are released with one or twomodalities as conditions, such as
text-gesture generation [74], audio-gesture generation [17, 21, 58]
and audio-text-gesture generation [42, 73]. Early models are mainly
based on CNN [39] or LSTM [28] for end-to-end training. Recently,
several efforts try to improve the performance by using generative
adversarial networks (GAN) [18, 66, 67], quantization [46], flow-
based [3, 26] and various types of synthesis techniques [1, 45].

However, previous research mainly focuses on the text or audio
as conditions, ignoring the cultural influence. Recent works on
multimodal chatbots and gestural analyses highlight the signifi-
cant impact of culture on the use of gestures. Trotta and Guarasci
[60] analyze the co-gesture behaviors of several Italian and English
politicians during face-to-face interviews, while Gander et al. [19]
explore how communicative gestures are used to express agree-
ment in first encounters by Swedish and Chinese. Additionally, the
cultural influence on other languages is also explored according to
recent research, such as Finnish [59] and Danish [50].

Although the Mix-StAGE [3] and MultiContext [73] consider
individual speaker’s style and video’s ID, respectively, the cultural
characteristics can differ significantly between individuals. We pro-
pose the CSGN which is designed to adapt multiple languages
without requiring retraining a new network and achieves state-of-
the-art performance across four large-scale benchmark datasets.

3 MCGD: MULTIPLE CULTURE GESTURE
DATASET

In this section, we provide a brief overview of the proposed Mul-
tiple Culture Gesture Dataset (MCGD). We first describe the data
acquisition process and the annotation procedure. Then, we an-
alyze the differences and similarities between different cultures
using MCGD, and present some key distributions. Supplementary
materials provide more detailed information about our dataset.

3.1 Data Acquisition
The data acquisition process of MCGD is designed to be flexible
and scalable to create favorable conditions for generating gestures.

The first step is to select candidate self-speech recordings from
multiple video-sharing websites. As suggested by Vidal et al. [62],
the videos that are selected need to have frontal body when speak-
ing, clear speech, and no background music. Videos that are out-
dated, of low resolution, or featuring music performances or inter-
views are excluded. The second step involves strictly controlling the
proportion of languages as well as accents to ensure the generaliza-
tion capability to different cultures. The videos are then segmented
into separate short video groups. The final step in this process is to
manually annotate the identities of the participants in the videos.
Each participant is given a unique ID number.

In total, we collect 10,414 segments, consisting of ten different cul-
tures. Each culture contains at least 20 native speakers (around half
of whom are female) and over ten hours of videos. More distribu-
tions of our dataset are shown in Fig. 1, and additional information
can be found in the supplementary materials.

3.2 Data Annotation
The annotation of MCDG refers to BEAT [42] and TED Gesture [74].
Multimodal signals are divided into text, audio, culture, and gesture.

For the text translation and alignment, we use an in-house-built
Automatic Speech Recognizer (ASR) to translate the initial text
from the videos and proofread it by at least two native annotators.
The inter-coder reliability checking is performed independently by
other annotators. The inter-coder agreement for translation reached
a Cohen’s kappa score in the range 0.75-0.80 [48]. Finally, we adopt
Montreal Forced Aligner (MFA) [47] for temporal alignment of the
text with audio.

For the gesture annotation, we represent the speakers’ pose over
time using a temporal stack of 2D skeletal keypoints [21], which
we obtain using OpenPose [12]. From the complete set of keypoints
detected, we select ten points corresponding to the head, neck,
R/L shoulders, R/L elbows, R/L wrists, and R/L hands to represent
gestures. We further converted all human poses to 3D by using the
3D pose estimator [51] which converts a sequence of 2D poses into
3D poses. Together with the video footage, we provide the skeletal
keypoints for each frame of the data at 15 FPS. Note that these are
not ground truth annotations, but rather a proxy for the ground
truth obtained from a state-of-the-art pose detection system.

In addition, we replicate the online approach proposed in Lotfian
and Busso [44], which is a modified version of the crowd-sourcing
protocol presented by Burmania et al. [11]. This approach tracks
the performance of workers in real-time, stopping the annotation
when their quality drops below a certain threshold.
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Figure 1: Distributions of our MCGD. (a) Our dataset in-
cludes ten cultures, and the proportion of each culture is
approximately the same. (b) Gender distribution of each cul-
ture. (c) Gestures are divided into four scenes which mainly
consist of speech. (d) By 263 speakers from ten cultures with
different recording duration.

4 METHOD
What is culture-specific gesture? Specifically, in a given culture,
individuals often have their own unique gesture customs, but over-
all, these gestures share common characteristics. Given raw audio
or text of a speech, our goal is to not only generate the speaker’s
corresponding gesture motion, but also adapt to multiple cultural
characteristics without training a new network.

To integrate all the modalities and incorporate cultural features,
we propose a cultural self-adaptive gesture generation network
(CSGN). The structure of our framework (Fig. 2) contains three
main components: (1) a multi-stage, cascade architecture that en-
codes the input modalities and assigns weights for different modal-
ities dynamically; (2) a cultural self-adaptive module that extracts
the characteristics of multiple cultures; (3) an autoregressive trans-
former decoder for predicting gestures.

4.1 Text and Audio Encoder
Text Encoder. The input text is a sequence of words whose length
varies according to the speed of speech. We first insert padding
tokens (⋄) into the word sequence to make it the same length as
gestures [73]. Next, the input text is passed by a culture identifica-
tion model [31, 32] and then the word in each frame is converted to
word embedding w𝑇 ∈ R300 by the pre-trained model in FastText-
multilingual [22] to reduce dimensions. After that, the customized

text encoder 𝐸𝑇 , an 4-layer temporal convolution network (TCN) [7]
with skip connections [25], extracts the features of the text Z𝑇 :

W𝑇 = (w𝑇
𝑖−𝑓 , ...,w

𝑇
𝑖+𝑓 ) (1)

Z𝑇 = (z𝑇
𝑖−𝑓 , ..., z

𝑇
𝑖+𝑓 ) = 𝐸𝑇 (w𝑇

𝑖−𝑓 , ...,w
𝑇
𝑖+𝑓 ) (2)

For each frame 𝑖 , the encoder 𝐸𝑇 generates the final latent features
of text by fusing information from 2𝑓 = 34 frames. The set of
word embedding and features are denoted as W𝑇 ∈ R2𝑓 ×300 and
Z𝑇 ∈ R2𝑓 ×128, respectively.

Audio Encoder. Since the length of audio input is usually fixed,
we represent audio using its raw waveform. We downsample the
audio to 16KHZ, considering the audio as 15 FPS. The audio encoder
𝐸𝐴 extracts the audio feature Z𝐴 ∈ R2𝑓 ×128 as:

Z𝐴 = (z𝐴
𝑖−𝑓 , ..., z

𝐴
𝑖+𝑓 ) = 𝐸𝐴 (𝑎𝑢𝑑𝑖𝑜,𝑀𝑒𝑙 (𝑎𝑢𝑑𝑖𝑜)) (3)

Where the𝑀𝑒𝑙 () represents the Mel Spectrogram of audio.
Additionally, to assign weights to audio and text and to enhance

their relevance, we fuse the Z𝐴 and Z𝑇 using a learnable attention
mechanism. Specifically, we compute the attention weight 𝛾𝑖 for
each frame 𝑖 as:

𝛾𝑖 =
𝑒𝑥𝑝 (W𝑎z𝐴𝑖 +W𝑡 z𝑇𝑖 + 𝑏)∑𝑓

𝑗=−𝑓 𝑒𝑥𝑝 (W𝑎z𝐴𝑖+𝑗 +W𝑡 z𝑇𝑖+𝑗 + 𝑏)
(4)

whereW𝑎 andW𝑡 are learnable weights and 𝑏 is a bias term. We
compute the fused feature z𝐴𝑇

𝑖
as the weighted sum of z𝐴

𝑖
and z𝑇

𝑖
:

z𝐴𝑇𝑖 = 𝛾𝑖z𝐴𝑖 + (1 − 𝛾𝑖 )z𝑇𝑖 (5)

the resulting feature Z𝐴𝑇 = (z𝐴𝑇
𝑖−𝑓 , ..., z

𝐴𝑇
𝑖+𝑓 ) has the same shape as

Z𝐴 and Z𝑇 , and contains information from both modalities

4.2 Cultural Self-adaptive Module
Our cultural self-adaptive module has two parts: (1) the culture
characteristic extractor 𝐸𝐶 ; (2) the cultural embedding space.

The extractor 𝐸𝐶 extracts the cultural feature Z𝐶 ∈ R2𝑓 ×64 from
the word embedding set W𝑇 and the penultimate layer’s output
Z𝐴

′
of audio encoder 𝐸𝐴 .

Z𝐶 = 𝑃 (z𝐶 ) = 𝑃 (𝐸𝐶 (W𝑇 ,Z𝐴
′
)) (6)

To ensure the correct decomposition of cultural feature Z𝐶 and
avoid trivial solutions, a classification network 𝐶𝐶𝑁 1 is used to
classify the culture. We add an average pooling layer before classi-
fication to prevent 𝐸𝐶 from homogenizing the culture features and
to preserve diversity [14]. Experiments (Fig. 6) demonstrate our
method is capable of achieving culture-specific gesture generation.

Furthermore, facing users who want to replace cultural features
from input modalities with another culture, we add a cultural style
embedding space, which converts cultural style to another or a spe-
cific style at the synthesis phase. It utilizes the culture IDs to reflect
the characteristics of each culture in the dataset. The cultural style
embedding space is a pre-trained and comprehensive feature space,
which is learned from our dataset. Each culture in the embedding
space is not unique. Meanwhile, to make the cultural features in
embedding space more interpretable, variational inference [36, 54]
that uses a probabilistic sampling process is used. The training and
structure details of cultural embedding space are in the appendix.
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gesture motion and adapts to multiple cultural characteristics without training a new network. With a cascaded architecture
and learnable dynamic weights, it enhances the relationship between text and audio. Furthermore, it extracts cultural features
from the multimodal inputs or a cultural style embedding space with a designated culture.

4.3 Gesture Decoder
The gesture decoder 𝐺 takes encoded features of audio and text as
input, after fusing the cultural characteristic, and then generates
gestures. Instead of taking a sequence of human poses as gestures,
we represent each pose as directional vectors which represent the
relative positions of the child joints from the parent joints and are
favored for training [73]. We have nine directional vectors (e.g.,
spine-neck, neck-R/L shoulders, etc.) and each vector has three
values indicating the 3-dimensions.

Specifically, for gesture generation, we use a transformer archi-
tecture which is a customized conditioned GPT-2 [71] with mask
self-attention. For each training sample, the decoder 𝐺 predicts
a sequence of gestures according to the encoded features of text,
audio, culture characteristics, and pre-gestures:

Z𝑀 = (z𝑀
𝑖−𝑓 , ..., z

𝑀
𝑖+𝑓 ) = 𝐹𝑢𝑠𝑖𝑜𝑛(Z𝐴𝑇 ,Z𝐶 ) (7)

V̂ = (v̂𝑖−𝑓 , ..., v̂𝑖+𝑓 ) = 𝐺 (Z𝑀 , 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠𝑝𝑟𝑒 ) (8)

Where the final estimated gesture V̂ ∈ R2𝑓 ×27 and Z𝑀 ∈ R2𝑓 ×300
is the fused features for all modalities. For Eq. 8, the length for
pre-gestures is the initial four frames.

4.4 Overall Training
For the performance of gesture generation, we use Huber loss [29]:

L𝑟𝑒𝑐 = E[ 1
2𝑓

𝐻𝑢𝑏𝑒𝑟𝐿𝑜𝑠𝑠 (V, V̂)] (9)

However, Huber loss suffers from the known issue of regression
to the mean which produces overly smooth motion [21]. Therefore,
we further add an adversarial loss to combat it and ensure the
realistic of gestures:

L𝐺𝐴𝑁,𝑎𝑑𝑣 = −E[log(𝐷 (𝐺 (Z𝑀 , 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠𝑝𝑟𝑒 )))] (10)

where the discriminator 𝐷 input to the adversarial training is only
the gesture itself. Additionally, inspired by Wu et al. [69], we add
a culture classification network (𝐶𝐶𝑁 2) to encourage generator𝐺
to produce gestures that are culturally diverse and can be distin-
guished from each other. The loss function of 𝐶𝐶𝑁 1 and 𝐶𝐶𝑁 2:

L𝑐𝑙𝑠 = 𝛼L𝑐𝑒 (𝐶𝐶𝑁 1 (𝑃 (z𝐶 )), 𝑙) + (1 − 𝛼)L𝑐𝑒 (𝐶𝐶𝑁 2 (V̂), 𝑙) (11)

where 𝑃 , 𝑙 and L𝑐𝑒 represent the average pooling layer, label and
cross-entropy loss, respectively.We also adopt a weight 𝛼 to balance
the weight of 𝐶𝐶𝑁 1 and 𝐶𝐶𝑁 2. After that, during training, we
adjust the weights of each loss and the final loss function is:

L = 𝛽0L𝑟𝑒𝑐 + 𝛽1L𝐺𝐴𝑁,𝑎𝑑𝑣 + 𝛽2L𝑐𝑙𝑠 (12)

where the weights for loss terms 𝛽0, 𝛽1 and 𝛽2 are determined
experimentally. The detailed implementations of our networks are
in the supplementary materials.

4.5 Culture Deception Rate (CDR)
While several metrics [21, 42, 73] are proposed to evaluate the qual-
ity of gesture generation, until now no evaluation metric has been
proposed for an automatic evaluation of specific-style gesture gen-
eration. We propose the culture deception rate (CDR) to evaluate
the cultural relevancy of gestures, which is inspired by deception
rate [56] from style transfer [20]. To compute the CDR, we use a
customized ResNet [25] for time series classification as backbone
and trained from scratch to classify gestures from different cultures
using our MCGD. The culture deception rate is calculated as the
fraction of generated gestures that are correctly classified by the
network. To ensure a fair comparison, we train the other meth-
ods for different cultures separately. The experiments for CDR are
conducted on Sec. 5.3. More details are shown in the appendix.
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5 EXPERIMENTS
We conduct extensive experiments to evaluate our method, includ-
ing qualitative comparisons of gesture generation results synthe-
sized by our model and other baselines in Section 5.2, followed by
presenting quantitative results in Section 5.3. Finally, in Section 5.4,
we conduct ablation studies to validate the effectiveness of each
component.

5.1 Experimental Setup
DatasetsWe evaluate the performance on the following three large
datasets for single-cultural gesture generation: (1) YouTube Ges-
ture [21], (2) TED Gesture [74], and (3) BEAT [42]. For multiple
cultural gesture generation, we use MCGD for training and testing.
All gesture poses are resampled at 15 frames per second and each
training sample has 34 frames which are sampled with a stride of 10
from the video sections. Note that in the inference stage, the initial
four frames are used as seed poses and the models are trained to
generate the remaining 30 poses (2 seconds).

Baselines To evaluate the performance of our method, we com-
pare several state-of-the-art architectures, such as Seq2Seq [74],
Speech2Gesture [21], Joint-Embedding [2], Audio2Gesture [41],
MultiContext [73],CaMN [42] andATG [46]. Among them, Seq2Seq [74],
Joint-Embedding [2] and Audio2Gesture [41] are based on the CNN
or LSTM for end-to-end training. Speech2Gesture [21] uses ad-
versarial training to improve performance. MultiContext [73] and
CaMN [42] learn features with cascaded network architectures. And
ATG [46] combines the vector quantisation (VQ-VAE) [61] with
GPT [71] as a two-stage method. All baselines are trained using
publicly available implementations with default configurations.

5.2 Qualitative Results
We qualitatively compare our co-speech gesture generation results
to the baselines in Fig. 3. More results of our method under different
conditions are shown in Fig. 4 and Fig. 5. The qualitative results in
Fig. 4 show some common characteristics of gestures. For instance,
gesture generation depends on speech rhythm and presence or
absence of speech in (a). Additionally, when referring to a range
(e.g., fromA to B, betweenA and B, etc.), gestures tend to swing from
one direction to the other, such as left to right in (b). Furthermore,
when encountering strong emotional expressions, the model often
synthesis the gestures that open the arms as shown in (c).

While retaining common characteristics of gestures, we achieve
differences across different cultures. We find that compared with
other cultures, the gestures generated by Arabic prefer to use the
right hand for more motions with the same multimodal inputs
as shown in Fig. 5 (a) (b). Because the concept of the left hand is
considered unclean in Arab culture [15, 38]. While speaking of “I”,
all cultures show relatively high consistency, typically using the
left, right, or both hands to point towards oneself, as shown in Fig. 5
(c). When talking about the future, generated by English prefer to
move their hand to the left, by Chinese prefer to swing arm to the
left, and Arab pinch virtual timelines with their fingers and slide to
the left in Fig. 5 (d).

All gestures are depicted using a 3D dummy character. The poses
represented as directional vectors are retargeted to the character

(a)

(b)

(c)

(d)

(e)

Speech Text

…the Kindle or Lego Mindstorms, but today with the ability to deploy things 
into the real world at such low cost, I'm changing the motto now…

Figure 3: Qualitative comparisons of (a) Joint-Embedding, (b)
MultiContext, (c) ATG, (d) CaMN, and (e) Ours for the same
input speech. The first seven images show seven evenly sam-
pled frames from the resulting pose sequences. The last col-
umn shows motion history images in which all frames are
superimposed. Please see the supplementary video for ani-
mated results.

…millions and millions of death, these significant benefits…

×2

…between two thousand and four and two thousand and eight, no… … I was wondering who took my armour!...

(a)

(b) (c)

Figure 4: Sample results of general co-speech generation.
The generated results show common characteristics based
on the speech rhythm, emotion, context, and presence or ab-
sence of speech.

with fixed bone lengths, and the gesture sequences are upsam-
pled using cubic spline interpolation to 30 FPS. We used the same
retargeting procedure for all animations. Please refer to our supple-
mentary video results which better convey temporal information.
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(a)

(b)

ArabicChineseEnglish

(c)

English Chinese Arabic

(d)

Figure 5: Sample results of cultural co-speech generation. (a)
and (b) compare the generated gestures withArabic and Eng-
lish. The results show Arabic prefers to use the right hand
for more motions with the same multimodal inputs [15, 38].
(c) and (d) show examples of different cultures when speak-
ing of "I" and future, respectively.

5.3 Quantitative Results
In this section, we use five quantitative evaluation metrics for com-
parison: 𝐿1 distance, PCK, FGD, SRGR, and CDR. We also use user
studies to evaluate the performance of generating gestures. Thus,
a total of six evaluation metrics are used to better evaluate our
method in different aspects. Additionally, the detail definitions of
these indicators are shown in the supplementary materials.

Percent of correct keypoints (PCK). Previous works mainly
use 𝐿1 regression loss of the different models in comparison. Yang
and Ramanan [72] propose PCK as a widely accepted metric for
pose detection. The main idea is to calculate the proportion of the
predicted keypoints within the 𝛼 maximum pixel of the ground-
truth keypoints. Following Ginosar et al. [21] suggestion, the 𝛼

is set to 0.2 in our experiments. We test our method and seven
baselines in Tab. 2. Our method outperforms other methods and
increases the state-of-the-art PCK by 10.1% (from 70.6 to 77.7).

Fréchet gesture distance (FGD). Yoon et al. [73] propose FGD
to apply the concept of FID [27] to the gesture generation prob-
lem. Accordingly, they trained a feature extractor based on au-
toencoding [55], which can be trained in an unsupervised manner.
After that, FGD measures the latent features’ distance between
the generated gestures and real human gestures. We adopt FGD as
the measure of gesture quality, the smaller value the better. Our
method improves the average FGD score from 53.7 to 48.0 across
three large-scale benchmark datasets (Tab. 2). Meanwhile, we also
show the learning curve comparisons of FGD, which are shown
in Fig. 6 (b). Compared with other baselines, our method achieves
state-of-the-art performance with faster convergence speed.

Semantic-relevant gesture recall (SRGR). SRGR [42] is to
evaluate the semantic relevancy of gestures, which can also be
interpreted as whether the gestures are vivid and diverse. SRGR
utilizes the semantic scores as a weight for the PCK between the
generated gestures and the ground truth gestures. Compared with
𝐿1 and PCK, SRGR emphasizes recalling gestures in the clip of
interest and is more in line with the subjective human perception of
gesture’s valid diversity. As shown in Tab. 3, our approach achieves
the highest score and increases the SRGR from 0.239 to 0.248.

Culture Deception Rate (CDR). CDR calculates the rate at
which the network classifies the generated gestures into the cor-
rect cultural features, inspired by deception rate [56] from style
transfer [20]. The definition of CDR is introduced in Sec. 4.5 and
the results are shown in Tab. 3. Our method achieves the highest
score with a cultural self-adapt architecture, which no need to train
a new network for a different culture.

User study. Due to the gesture generation task being a highly
subjective task, user study is widely adopted in the previousworks [21,
42, 46, 60, 73]. Here we use two user evaluation metrics: gesture cor-
rectness and gesture-audio synchrony to evaluate the performance
of each method. We select 20 audio-text pairs as the input of the
above several compared methods, yielding 20 generated gestures
for each method. We randomly ordered all the generated gestures
and show them to participants and ask them two questions. The
first is to evaluate gestures correctness, i.e., physical correctness,
diversity and attractive (more natural and human-like) [42]. The
other is to choose the gesture motion which is more appropriate
with the speech audio and words (gesture-audio synchrony) [73].
We collect 1,000 votes from 50 participants for each question and
report the result in Fig. 6 (a), where we can see the results obtained
by our method are more popular than those of other methods.

To summarize, our method can not only generate high-quality
gestures based on audio and text, but also self-adapt to multiple
cultures without training a new network. According to the user
study, our method achieves both remarkable gestures correctness
and gesture-audio synchrony.

5.4 Ablation Studies
In this section, we explore each component’s effect on our method
and validate their importance.

Text and audio encoder. Here, we compare the PCK and FGD
values under different conditions in Tab. 4, including using differ-
ent text and audio encoders, not fusing but only concatenating
the features of audio and text, and the influence of different 𝛽0
values. The results show that our method and architecture strike a
balance by taking time cost and performance into account. For the
𝛽0, when the demand for semantic relevancy is high, we encourage
the network to generate gestures spatially similar to ground truth
as much as possible, thus strengthening the L1 penalty and decreas-
ing the adversarial penalty. Each component we used benefits for
extracting the features of input modalities.

6 CONCLUSION
In this paper, to increase the cultural influence on co-speech gesture
generation, we first build MCGD, a large freely available gesture
dataset over 200 hours with multiple cultures, to solve the lack
of datasets with different cultures. Furthermore, to overcome the
generalization and flexibility across different languages, we pro-
pose a CSGN to synthesize gestures based on three modalities and
adapt to multiple different cultures without requiring retraining
the network. Statistical analyses on MCGD show that we balanced
the datasets to cover a wide range of situations. It could benefit
the research on comprehending relationships between multimodal
data and developing naturalistic multimodal chatbots in different
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Table 2: Comparison of PCK, FGD and 𝐿1 distance score one three diverse datasets. The best scores are reported in bold.

Methods
PCK (↑) FGD (↓) 𝐿1 distance (↓)

YouTube TED BEAT Average YouTube TED BEAT Average YouTube TED BEAT Average

Seq2Seq 39.7 57.1 47.2 48.0 167.9 40.8 261.3 156.7 0.70 0.69 1.16 0.85
Speech2Gesture 54.5 67.2 51.8 57.8 105.4 30.1 256.7 130.7 0.67 0.64 1.13 0.81
Joint-Embedding 65.8 74.6 53.5 64.6 108.6 27.8 287.6 141.3 0.66 0.62 1.05 0.78
Audio2Gesture 56.7 72.9 54.8 61.5 78.6 21.7 223.8 108.0 0.61 0.59 1.05 0.75
MultiContext 67.4 75.3 56.4 66.4 40.5 6.2 176.2 74.3 0.56 0.57 0.98 0.70
ATG 67.0 78.3 58.1 67.8 37.1 6.2 156.4 66.6 0.57 0.53 0.92 0.67
CaMN 71.3 79.9 60.6 70.6 31.6 5.8 123.7 53.7 0.54 0.52 0.94 0.67

Ours 80.7 86.5 65.9 77.7 31.9 4.9 107.2 48.0 0.54 0.53 0.91 0.66

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

FG
D

Training Epoch

Seq2Seq
Joint_Embedding
Speech2Gesture
MulitContext
BEAT
Ours

Which do you think is 
more natural and human-like

(gestures correctness)?

Which do you think is more 
appropriate with the speech audio and 
words (gesture-audio synchrony)?

Joint Embedding

Speech2Gesture

MultiContext

CaMN

75.8

65.2

54.8

67.4

81.7

69.7

55.1

56.9

Ours

(a) (b) (c)

Figure 6: (a) Human perceptual study. We asked participants to choose which gesture gets better performance on “gesture
correctness” or “gesture-audio synchrony”. Our model is rated best for generating correct and audio-synchrony gestures. (b)
Validation learning curves measured by Fréchet gesture distance (FGD). Our method achieves state-of-the-art performance
with faster convergence speed. (c) Diverse distance of Z𝐶 from different cultures. Color gradients correspond to Euclidean
distance on a held-out test set (higher is better). Each cultural features are diverse fromothers and ourCSGN is culture-specific.

Table 3: Results of SRGR (BEAT) and CDR (MCGD) compar-
isonswith state-of-the-artmodels. Higher number indicates
better performance. The best scores are reported in bold.

Methods SRGR (↑) CDR (↑)
Seq2Seq 0.173 12.80%
Speech2Gesture 0.092 18.41%
Joint-Embedding 0.127 24.62%
Audio2Gesture 0.097 21.85%
MultiContext 0.196 29.97%
ATG 0.205 28.95%
CaMN 0.239 33.63%

Ours 0.248 39.87%

cultures. Extensive experiments demonstrate our approach is con-
cise and effective, and improves the state-of-the-art average FGD
from 53.7 to 48.0 and culture deception rate from 33.63% to 39.87%.
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Table 4: The ablation studies on text and audio encoder.

Method
Train time TED Gesture
sec/epoch (↓) 𝐿1 (↓) FGD (↓)

0.1 - 1.03 30.1
𝛽0 (ours=0.4) 0.3 - 0.85 10.3

0.5 - 0.52 4.9
0.7 - 0.51 8.9

TCN (ours=4) 3 338.7 0.57 10.2
5 377.2 0.58 13.6

MultiContext 327.9 0.57 9.2
𝐸𝐴 ResNet50 635.8 0.54 6.3

Wav2Clip 629.3 0.52 4.8

w/o fuse 353.6 0.53 5.4

Ours 359.2 0.53 4.9
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A ADDITIONAL EXPERIMENTS
A.1 Ablation Studies
Cultural self-adaptive module.We explore further experiments
on the cultural self-adaptive module. We use different values of 𝛼
and compare the performance with andwithout the average pooling
layer in Tab. 5. We also calculate the diverse distance of Z𝑀 from
different cultures in Fig. 6 (c). Both results show the effectiveness
of our method.

Table 5: The ablation study on cultural self-adaptivemodule

Method
MCGD Train time
CDR (↑) sec/epoch (↓)

0.0 35.27% 350.9
𝛼 (ours=0.5) 0.3 37.67% -

0.7 39.56% -
1.0 38.11% 348.1

w/o average pooling 38.93% 351.0

Ours 39.87% 359.2

Each modality. Table. 6 summarizes the results of the ablation
study, indicating that removing any of the three modalities - text,
audio, and culture - led to a reduction in the model’s performance.
These results demonstrate that all three modalities used in the
proposed model have positive effects on gesture generation.

Table 6: Results of the ablation study for the proposedmodel.
Ablations are not accumulated

Configuration FGD (↓)
Proposed (no ablation) 4.9
Without speech text modality 6.0
Without speech audio modality 6.1
Without speech culture modality 8.3

A.2 Additional Qualitative Results
Due to the fact that the performance of co-speech gesture gener-
ation cannot be well evaluated by images, in our supplementary
materials (ZIP), we provide a video version of the results in the main
paper, which can be found in a file named “Videos-Main". Addition-
ally, to further demonstrate the effectiveness of our method, we
also include more qualitative results in another file named “Videos-
Supplementary”.

B LIMITATION AND FUTUREWORK
While the current research presents promising results, there is still
room for improvement. One major challenge is the difficulty of
controlling the gesture generation process. Despite the possibility
of manipulating cultural style, users cannot constrain gestures or
control specific gestures, such as the desire for an avatar to make
a deictic gesture when uttering a particular word. For example,

we try to improve the controllability of the gesture generation
process, the users can constrain gestures or control specific gestures,
such as the desire for an avatar to make a deictic gesture when
uttering a particular word. This lack of control is prevalent in most
end-to-end neural network models, as pointed out by Jahanian
et al. [30]. To address this issue, one potential solution would be
to augment the existing model with more controllability features,
such as constraining poses during generation or some rules based
on prior knowledge.

In addition, it is worth noting that our current research focused
on the motion of the upper body. However, integrating whole-body
motion, including facial expressions and finger movements, would
enhance the naturalness of the generated gestures. Meanwhile,
more than 60% of scenes are from speech. We will add more data
from other various scenes to ensure a balanced distribution of
scenes in our future work.

Furthermore, our gesture generation process is based on Python,
and the resulting gestures are animated in Blender using Python
scripts. However, there are several software options available for
constructing and manipulating 3D models. Although we have not
yet explored how to utilize our generated gestures to manipulate
models in these alternative software environments, it represents
an interesting area for future work.

C TRAINING DETAILS
In the training stage, instead of taking a sequence of human poses
as gestures, we represent each pose as directional vectors which
represent the relative positions of the child joints from the parent
joints and are favored for training [73]. In total, we have nine
directional vectors: spine-neck, neck-nose, nose-head, neck-R/L
shoulders, R/L shoulders-R/L elbows, and R/L elbows-R/L wrists.
Each vector has three values indicating the 3-dimensions.

Meanwhile, due to the different FPS of video and frequencies of
audio in each dataset, we uniformly resample the videos and audio
at 15 FPS and 16K HZ.

At each training iteration, we randomly sample a batch of size 𝑁 ,
each training sample has 34 frames which are sampled with a stride
of 10 from the valid video sections. The initial four frames are used
as seed poses and the model is trained to generate the remaining
30 poses (2 seconds). We excluded non-informative samples having
little motion (i.e., low variance of a sequence of poses) and erratic
samples having lying poses (i.e., low angle of the spineśneck vector).

We adopt Adam [35] with 0.005 learning rate, 𝛽1 = 0.5 and 𝛽2 =
0.999.Weights for the loss terms (𝛽0L𝑟𝑒𝑐+𝛽1L𝐺𝐴𝑁,𝑎𝑑𝑣+𝛽2L𝑐𝑙𝑠 ) are
determined experimentally (𝛽0 = 500, 𝛽1 = 5, 𝛽2 = 3). In addition,
there is a warm-up period of 10 epochs in which the adversarial
loss is not used (𝛽1 = 0). Note that in the ablation study of the main
paper, the 𝛽0 = 0.5 represents 0.5 × 103 for short. We train our
model on eight 16 GB GeForce RTX 3090 GPUs, where batch size is
256 for training and epoch is 100 in total.

As for the comparison baselines, we use the publicly available
implementations with the default configuration. It is worth noting
that when we evaluate the CDR metric, we train other baselines
for ten cultures because they need different networks for different
cultures or languages.
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Table 7: Additional MCGD statistical analysis.

Statistical Measure Value

Video Mp4
Transcript Txt
Text Align TextGrid

File Format Aduio Wav
Gesture Annotation Npy

Cache Lmdb

Resolution 720P
Basci indicator Sampling frequency 25 HZ

Bitrate 750 kbit/s

Total perople 263
Gneder Distribution Male 144

Female 119
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Figure 8: Detailed architecture of the cultural embedding
space. The 𝐶𝐶𝑁 1 is the pre-trained model in the training
stage of the main structure.
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Chinese English
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…….
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Figure 7: The file organization structure of MCGD.

D ADDTIONAL INFORMATION OF MCGD
In this section, we provide additional details about our MCGD and
present further fundamental statistical analyses. The videos of our

MCGD are obtained from official online websites, such as TED offi-
cial channels and YouTube. Outdated videos of low resolution and
videos of music performances or interviews are excluded. All videos
are sourced from public domain videos or under Creative Commons
licenses, which allow for such use. For the few videos without hav-
ing transcripts, we use a multilingual ASR systemUSM [75], a single
large model that performs ASR across 100+ languages and results
in WER of 11.8%. The gesture we annotated contains a sequence
of human poses 𝑝𝑠 consisting of 10 upper body joints (spine, head,
nose, neck, L/R shoulders, L/R elbows, and L/R wrists). All poses are
spine-centered. In the representation of joint coordinates, a small
translation of neck, which is the parent joint of both arms, can have
an excessive effect on all coordinates of the arms. We denote human
poses represented as directional vectors by 𝑑𝑖 , and all directional
vectors are normalized to the unit length. We note that forearm
twists are not considered in this paper.

We also give additional statistical analysis and file organization
structure of MCGD on Tab. 7 and Fig. 7, respectively.

E DETAILS OF CULTURAL STYLE
EMBEDDING SPACE

The culture embedding space aims to convert cultural style to an-
other or a specific style. For instance, if the input text/audio is in
English, but the user wants the gestures to be in the Chinese style,
the culture embedding space can be used. It utilizes the culture IDs
to reflect the characteristics of each culture in the dataset. The cul-
ture IDs are represented as one-hot vectors where only one element
of a selected speaker is nonzero.

A set of fully connected layers maps a speaker ID to a cultural
embedding space Z𝐶

′ ∈ R64 with the same dimensions as the 𝐸𝐶
output Z𝐶 ∈ R64. To make the cultural embedding space more
interpretable, variational inference [36, 54] that uses a probabilis-
tic sampling process is used. In the training stage, as shown in
Fig. 8, we take several steps to ensure that the cultural feature Z𝐶

′

is represented accurately and avoids trivial solutions. Firstly, we
classify Z𝐶

′
using 𝐶𝐶𝑁 1. The 𝐶𝐶𝑁 1 has been pre-trained during

the main structure training. This step helps in maintaining the
correct decomposition of cultural features. Additionally, to prevent
the cultural embedding space from becoming too sparse, we use
the Kullback-Leibler (KL) divergence between N(0, 𝐼 ) and the cul-
tural embedding space assumed Gaussian[36]. This step helps in
preserving the diversity of the cultural features.

Moreover, our culture embedding space does differ from personal
ID branches in previous works like SDT [53] and HA2G [43], which
only use KL loss to ensure diversity. We also use gesture style loss
Eq. 11 to train the culture ID branch. Furthermore, the culture ID
branch in our methodology is not trained initially, unlike in SDT
and HA2G. This process takes several steps to accurately represent
cultural features and prevent trivial solutions. It’s worth noting
that within the learned culture embedding space, there might be
some individual variations, yet they remain within the bounds of a
particular cultural ID.

In total, the cultural embedding space has two loss functions: (1) a
classification loss and (2) Kullbackś-Leibler (KL) divergence. Notice
that the Z𝐶

′
on the style embedding space is trained separately

from the main structure, and is only used in the synthesis stage.
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